主范例的过载
当前位置:以往代写 > JAVA 教程 >主范例的过载
2019-06-14

主范例的过载

主范例的过载

主(数据)范例能从一个“较小”的范例自动转酿成一个“较大”的范例。涉及过载问题时,这会稍微造成一些杂乱。下面这个例子展现了将主范例通报给过载的要领时产生的环境:

 

//: PrimitiveOverloading.java
// Promotion of primitives and overloading

public class PrimitiveOverloading {
  // boolean can't be automatically converted
  static void prt(String s) { 
    System.out.println(s); 
  }

  void f1(char x) { prt("f1(char)"); }
  void f1(byte x) { prt("f1(byte)"); }
  void f1(short x) { prt("f1(short)"); }
  void f1(int x) { prt("f1(int)"); }
  void f1(long x) { prt("f1(long)"); }
  void f1(float x) { prt("f1(float)"); }
  void f1(double x) { prt("f1(double)"); }

  void f2(byte x) { prt("f2(byte)"); }
  void f2(short x) { prt("f2(short)"); }
  void f2(int x) { prt("f2(int)"); }
  void f2(long x) { prt("f2(long)"); }
  void f2(float x) { prt("f2(float)"); }
  void f2(double x) { prt("f2(double)"); }

  void f3(short x) { prt("f3(short)"); }
  void f3(int x) { prt("f3(int)"); }
  void f3(long x) { prt("f3(long)"); }
  void f3(float x) { prt("f3(float)"); }
  void f3(double x) { prt("f3(double)"); }

  void f4(int x) { prt("f4(int)"); }
  void f4(long x) { prt("f4(long)"); }
  void f4(float x) { prt("f4(float)"); }
  void f4(double x) { prt("f4(double)"); }

  void f5(long x) { prt("f5(long)"); }
  void f5(float x) { prt("f5(float)"); }
  void f5(double x) { prt("f5(double)"); }

  void f6(float x) { prt("f6(float)"); }
  void f6(double x) { prt("f6(double)"); }

  void f7(double x) { prt("f7(double)"); }

  void testConstVal() {
    prt("Testing with 5");
    f1(5);f2(5);f3(5);f4(5);f5(5);f6(5);f7(5);
  }
  void testChar() {
    char x = 'x';
    prt("char argument:");
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
  }
  void testByte() {
    byte x = 0;
    prt("byte argument:");
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
  }
  void testShort() {
    short x = 0;
    prt("short argument:");
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
  }
  void testInt() {
    int x = 0;
    prt("int argument:");
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
  }
  void testLong() {
    long x = 0;
    prt("long argument:");
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
  }
  void testFloat() {
    float x = 0;
    prt("float argument:");
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
  }
  void testDouble() {
    double x = 0;
    prt("double argument:");
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
  }
  public static void main(String[] args) {
    PrimitiveOverloading p = 
      new PrimitiveOverloading();
    p.testConstVal();
    p.testChar();
    p.testByte();
    p.testShort();
    p.testInt();
    p.testLong();
    p.testFloat();
    p.testDouble();
  }
} ///:~

若调查这个措施的输出,就会发明常数值5被看成一个int值处理惩罚。所以假使可以利用一个过载的要领,就能获取它利用的int值。在其他所有环境下,若我们的数据范例“小于”要领中利用的自变量,就会对那种数据范例举办“转型”处理惩罚。char得到的结果稍有些差异,这是由于假期它没有发明一个精确的char匹配,就会转型为int。
若我们的自变量“大于”过载要领期望的自变量,这时又会呈现什么环境呢?对前述措施的一个修改展现出了谜底:

 

//: Demotion.java
// Demotion of primitives and overloading

public class Demotion {
  static void prt(String s) { 
    System.out.println(s); 
  }

  void f1(char x) { prt("f1(char)"); }
  void f1(byte x) { prt("f1(byte)"); }
  void f1(short x) { prt("f1(short)"); }
  void f1(int x) { prt("f1(int)"); }
  void f1(long x) { prt("f1(long)"); }
  void f1(float x) { prt("f1(float)"); }
  void f1(double x) { prt("f1(double)"); }

  void f2(char x) { prt("f2(char)"); }
  void f2(byte x) { prt("f2(byte)"); }
  void f2(short x) { prt("f2(short)"); }
  void f2(int x) { prt("f2(int)"); }
  void f2(long x) { prt("f2(long)"); }
  void f2(float x) { prt("f2(float)"); }

  void f3(char x) { prt("f3(char)"); }
  void f3(byte x) { prt("f3(byte)"); }
  void f3(short x) { prt("f3(short)"); }
  void f3(int x) { prt("f3(int)"); }
  void f3(long x) { prt("f3(long)"); }

  void f4(char x) { prt("f4(char)"); }
  void f4(byte x) { prt("f4(byte)"); }
  void f4(short x) { prt("f4(short)"); }
  void f4(int x) { prt("f4(int)"); }

  void f5(char x) { prt("f5(char)"); }
  void f5(byte x) { prt("f5(byte)"); }
  void f5(short x) { prt("f5(short)"); }

  void f6(char x) { prt("f6(char)"); }
  void f6(byte x) { prt("f6(byte)"); }

  void f7(char x) { prt("f7(char)"); }

  void testDouble() {
    double x = 0;
    prt("double argument:");
    f1(x);f2((float)x);f3((long)x);f4((int)x);
    f5((short)x);f6((byte)x);f7((char)x);
  }
  public static void main(String[] args) {
    Demotion p = new Demotion();
    p.testDouble();
  }
} ///:~

#p#分页标题#e#

在这里,要领回收了容量更小、范畴更窄的主范例值。若我们的自变量范畴比它宽,就必需用括号中的范例名将其转为适当的范例。假如不这样做,编译器会陈诉堕落。
各人可留意到这是一种“缩小转换”。也就是说,在造型或转型进程中大概丢失一些信息。这正是编译器强迫我们明晰界说的原因——我们需明晰表达想要转型的愿望。

    关键字:

在线提交作业