面对大数据 数据分析师的尴尬
当前位置:以往代写 > 大数据教程 >面对大数据 数据分析师的尴尬
2019-06-14

面对大数据 数据分析师的尴尬

面对大数据 数据分析师的尴尬

在众多学习中,文章也许不起眼,但是重要的下面我们就来讲解一下!!

这几天和一个圈里的好友聊天,问我怎么来看待现在的工作状态。她也是一个做网游数据分析的分析师,她说一天的工作除了固定的发完每天要做的那部分,似乎剩下的时间就没了什么事可做,最感觉有点后怕的是,作为一个leader,下面一群人还需要指点和安排。这种空洞让她有些不能心安。Oracle培训
事实上,我有很长的一段时间也是这种状态,最后练就的本事时每天的必须工作只需要半小时就搞定了,剩下7个多小时就闲着了,闲的心里面有点害怕,因为怕这种闲。而造成这种感觉其实有时候感觉自己是在浪费自己的青春和时间,想努力抓住一些东西,但是又无法抓住。网游数据分析师说来这个词曝光率都不是很高,上有数据挖掘工程师的大帽子,之后又是业务分析师,运营团队的人,又是研发策划的人压着,其实有时候感觉挺苦逼的,挺悲催的地位,外加上环境和目前的分为并没有看重这个行业进步和发展,也就这样了。
现在几乎每天看到Big Data,数据分析这些热词,说实话我对于Hadoop,mapreduce 这些不是很关心,因为我不是一个要去做技术的人,我对于经济学,心理学,营销学也不是很关心,因为我也不是一个要去做管理的,纯粹的运营的人,我有自己一个独立的称号网游数据分析师。
也许这个职位的价值不被数据挖掘工程师认可,因为你的技术没他们好,连个算法都搞不懂;
也许这个职位的价值不被运营人员所认可,因为你的分析和知识他们就能做到,连业务都没吃透;
也许这个职位的价值不被研发的人所认可,因为你根本就不懂研发,狗屁不是。oracle教程
但是为什么还要坚持呢?因为存在价值。

面对大数据 数据分析师的尴尬
因此就不必怀疑自己自己的价值,如果你热爱这份职业。
一个网游数据分析师不该停留在那些指标上,侃侃而谈就ok了,我们要去吃透那些指标,我们要去理解业务,驾驭上层的数据。同时,我们却又要不断的去探究为什么,因为数据挖掘工程师不会告诉你为什么,他们只能告诉你what,而你作为一个数据分析师,在业务者与挖掘者之间,就要解决,最终服务于运营业务的how。
所以我们可以不懂得高深的算法,但我们要懂得如何将算法应用,如何驾驭那些软件。我们不懂得市场,但是我们要懂得一点长尾,懂得一点怪诞心理,懂得一点社会性。我们不懂得设计,但是我们懂得一点用户体验,购买决策。

趋势一:数据的资源化oracle视频教程
何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。
趋势二:与云计算的深度结合
大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
趋势三:科学理论的突破
随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
趋势四:数据科学和数据联盟的成立
未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。
趋势五:数据泄露泛滥
未来几年数据泄露事件的增长率也许会达到100%,除非数据在其源头就能够得到安全保障。可以说,在未来,每个财富500强企业都会面临数据攻击,无论他们是否已经做好安全防范。而所有企业,无论规模大小,都需要重新审视今天的安全定义。在财富500强企业中,超过50%将会设置首席信息安全官这一职位。企业需要从新的角度来确保自身以及客户数据,所有数据在创建之初便需要获得安全保障,而并非在数据保存的最后一个环节,仅仅加强后者的安全措施已被证明于事无补。
趋势六:数据管理成为核心竞争力
数据管理成为核心竞争力,直接影响财务表现。当“数据资产是企业核心资产”的概念深入人心之后,企业对于数据管理便有了更清晰的界定,将数据管理作为企业核心竞争力,持续发展,战略性规划与运用数据资产,成为企业数据管理的核心。数据资产管理效率与主营业务收入增长率、销售收入增长率显著正相关;此外,对于具有互联网思维的企业而言,数据资产竞争力所占比重为36.8%,数据资产的管理效果将直接影响企业的财务表现。oracle数据库教程
#p#分页标题#e#

其实思考了很久,我觉得作为一个数据分析师,最终就是在构建个非常完整和健康的CRM。基本上层和底层的数据构建和服务对象都是CRM,只是这个东西从未完整和很好的应用过。在这点上,前几天我听过有人说我们做出来的游戏是要我们自己完全能够掌握和把控的产品,不然就会很危险,这点我不怀疑,但是最终的问题是你的产品是要给玩家来玩的,你懂得你的玩家吗?作为业务者只给你一堆指标就能够看出玩家的变化和行为的了吗?作为挖掘者,得出特征,就能直接指导设计改进了吗?我想都不太现实,这都是需要协作和融合的。
无论是细分数据和还是宏观的数据指标控制,都是相互依赖和分析并存的,因此作为数据分析师不只是懂得业务,也会去尽量懂得挖掘数据,这只是一个基本的要求,此外还要有如下的要求:
数据挖掘工程师不见得关心长尾理论,但是你要去关心;
运营人员和团队不见得关心神经网络,但是你要去关心;
最后我想举一个例子,前段时间看过一篇介绍分析永恒之塔流失的文章,作者在最后说尽管他们成功预测了流失概率,但是仍旧找不到流失的原因何在,也不知道该去如何控制改进。这个问题上挖掘者已经做到了,但是业务层包括研发层还是不能找到问题,你觉得这个问题该谁去解决?
更多视频课程文章的课程,可到课课家官网查看。我在等你哟!!!

    关键字:

在线提交作业