大数据或成“抑郁情绪识别”怎么进行
当前位置:以往代写 > 大数据教程 >大数据或成“抑郁情绪识别”怎么进行
2019-06-14

大数据或成“抑郁情绪识别”怎么进行

在众多学习中,文章也许不起眼,但是重要的下面我们就来讲解一下!!

由哈工大“社会网络与数据挖掘”联合实验室、国内数据挖掘公司“宏博知微”组成的研发团队,于 6 月底建成基于社交媒体数据的抑郁倾向识别模型。相关人士表示,这项研究结果或成为抑郁情绪临床识别之外的新兴识别方法。oracle数据库教程
大数据或成“抑郁情绪识别”怎么进行
据公开数据,**人群中有 63.5% 患有抑郁症,但仅 9% 在**前曾到精神科或心理咨询机构就诊。抑郁识别模型研发者认为,利用大数据来识别个体抑郁倾向及**倾向,或能及时挽救更多抑郁倾向人群的生命。该模型是通过采集新浪微博全平台亿级的数据,运用自然语言处理、时间序列、机器学习等算法,对微博用户进行抑郁倾向识别,截止日前已从识别出的抑郁倾向用户中,多人在微博中称准备**。oracle视频教程
存在抑郁倾向的微博用户与普通用户发博时间有明显差异,这部分人群发博高峰在 23 点,其夜间活跃度比普通用户平均约高出 30%(图二)。该群体微博关键词为:死、抑郁症、生命、痛苦、**(见图一)。有 60% 为女性,40% 为男性,女性比例比男性略高,也与之前两位女性微博用户 “走饭” 、“sienna赛娜” 因抑郁症而**的报道相符。

有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。
  大数据的价值体现在以下几个方面:1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;2) 做小而美模式的中长尾企业可以利用大数据做服务转型;3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。

不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”[5]  这确实是需要警惕的。

大数据或成“抑郁情绪识别”怎么进行oracle视频
利用大数据干预抑郁情绪识别及治疗是否可行,微博用户对此看法不一。持反对态度的网友“sen 哥 -” 认为:“一想到万一我死了微博也会被素不相识的人翻出来,公开地 at,一条条统计数据,一个个点蜡烛,好几百转发,就觉得连死这件事都他妈的毫无尊严。出发点是好的又如何,方式如此无礼粗暴,我完全不觉得 po 主有试图站在患者的角度理解忧郁的痛苦。”持支持态度的网友“La_Prairie 认为”:“ 多一些关爱,就少一些遗憾。”也有中立网友认为:“大数据用于商业,同样也要用于非盈利功德无量的人文关怀。比如向这样的博主发送激励、正能量的内容,进行实时正向干扰。”
对于以上争议,研究团队表示:团队从 2011 年起就从事新浪微博用户特征的挖掘刻画研究,包括行业刻画、疾病刻画、情绪刻画等。将在未来一段时间内,基于不断的完善情感模型,增加情景模型和一些人物画像模型,对抑郁倾向人群(乃至其他边缘化人格及**心理学中一些在微博中可以体现的特征)做出更准确的判断,为精神类疾病、危害社会行为的提前干预做数据支持。

我国抑郁症发病率约为 3%~5%,目前已有超过 2600 万人患抑郁症。在过去 50 年里,我国**率上升了 60%,平均每年有 28.7 万人死于**,200 万人**未遂,**人群中约有 95% 患有精神障碍。全国地市级以上医院对抑郁症的识别率不到 20%。

“我有抑郁症,所以就去死一死,没什么重要的原因,大家不必在意我的离开。拜拜啦。”——走饭(2012 年 3 月 18 日 10:54)
“抱歉很多事情没来得及处理和交待就离开。抑郁症太痛苦,世界变得黑暗扭曲,再努力也感受不到任何美好,想什么都想到死。姥姥在叫我,应该就要精神**,实在熬不住了。再见,大家。 ”——sienna 赛娜(2013 年 2 月 16 日 23:57)Oracle培训

#p#分页标题#e#

在微博上跟这个世界告别后,两位姑娘在去年和今年的春天分别离开了尘世。她们同被“抑郁症”折磨,同样选择了**。值得寻味的是,微博上的几亿用户,就没有人关注到她们进而干预劝导吗?微博大平台中,还有多少个“走饭”、“赛娜”?有没有办法在他们做出**行动前就对其进行特别关注?

更多视频课程文章的课程,可到课课家官网查看。我在等你哟!!!

    关键字:

在线提交作业