总结Apriori算法原理大全
当前位置:以往代写 > 大数据教程 >总结Apriori算法原理大全
2019-06-14

总结Apriori算法原理大全

总结Apriori算法原理大全
     Apriori算法是现在大多数人都需要知道的算法,目前还有一些小伙伴不了解,那么今天课课家小编就来和大家一起探讨一下。如果对这方面很熟悉的大神,可以交流一下,有需要的小伙伴,可以参考一下,一定要认真阅读哦!
全面总结Apriori算法原理_,数据库_网络安全_网络工程师_课课家教育
     关联算法是数据挖掘中的一类重要算法。1993年,R.Agrawal等人首次提出了挖掘顾客交易数据中项目集间的关联规则问题,其核心是基于两阶段频繁集思想的递推算法。该关联规则在分类上属于单维、单层及布尔关联规则,典型的算法是Apriori算法。

  Apriori算法将发现关联规则的过程分为两个步骤:第一步通过迭代,检索出事务数据库1中的所有频繁项集,即支持度不低于用户设定的阈值的项集;第二步利用频繁项集构造出满足用户最小信任度的规则。其中,挖掘或识别出所有频繁项集是该算法的核心,占整个计算量的大部分。

  Apriori算法是常用的用于挖掘出数据关联规则的算法,它用来找出数据值中频繁出现的数据集合,找出这些集合的模式有助于我们做一些决策。比如在常见的超市购物数据集,或者电商的网购数据集中,如果我们找到了频繁出现的数据集,那么对于超市,我们可以优化产品的位置摆放,对于电商,我们可以优化商品所在的仓库位置,达到节约成本,增加经济效益的目的。下面我们就对Apriori算法做一个总结。

  1.频繁项集的评估标准

  什么样的数据才是频繁项集呢?也许你会说,这还不简单,肉眼一扫,一起出现次数多的数据集就是频繁项集吗!的确,这也没有说错,但是有两个问题,第一是当数据量非常大的时候,我们没法直接肉眼发现频繁项集,这催生了关联规则挖掘的算法,比如Apriori,PrefixSpan,CBA。第二是我们缺乏一个频繁项集的标准。比如10条记录,里面A和B同时出现了三次,那么我们能不能说A和B一起构成频繁项集呢?因此我们需要一个评估频繁项集的标准。

  常用的频繁项集的评估标准有支持度,置信度和提升度三个。

  支持度就是几个关联的数据在数据集中出现的次数占总数据集的比重。或者说几个数据关联出现的概率。如果我们有两个想分析关联性的数据X和Y,则对应的支持度为
支持度就是几个关联的数据在数据集中出现的次数占总数据集的比重。或者说几个数据关联出现的概率。如果我们有两个想分析关联性的数据X和Y,则对应的支持度为
  以此类推,如果我们有三个想分析关联性的数据X,Y和Z,则对应的支持度为:
以此类推,如果我们有三个想分析关联性的数据X,Y和Z,则对应的支持度为
  一般来说,支持度高的数据不一定构成频繁项集,但是支持度太低的数据肯定不构成频繁项集。

  置信度体现了一个数据出现后,另一个数据出现的概率,或者说数据的条件概率。如果我们有两个想分析关联性的数据X和Y,X对Y的置信度为
置信度体现了一个数据出现后,另一个数据出现的概率,或者说数据的条件概率。如果我们有两个想分析关联性的数据X和Y,X对Y的置信度为
  也可以以此类推到多个数据的关联置信度,比如对于三个数据X,Y,Z,则X对于Y和Z的置信度为:

也可以以此类推到多个数据的关联置信度,比如对于三个数据X,Y,Z,则X对于Y和Z的置信度为
  举个例子,在购物数据中,纸巾对应鸡爪的置信度为40%,支持度为1%。则意味着在购物数据中,总共有1%的用户既买鸡爪又买纸巾;同时买鸡爪的用户中有40%的用户购买纸巾。

  提升度表示含有Y的条件下,同时含有X的概率,与X总体发生的概率之比,即:
提升度表示含有Y的条件下,同时含有X的概率,与X总体发生的概率之比,即  提升度体先了X和Y之间的关联关系,关联度高则提升度小,一个特殊的情况,如果X和Y独立,则有
提升度体先了X和Y之间的关联关系,关联度高则提升度小,一个特殊的情况,如果X和Y独立,则  达到最大,因为此时
一般来说,要选择一个数据集合中的频繁数据集,则需要自定义评估标准。最常用的评估标准是用自定义的支持度,或者是自定义支持度和置信度的一个组合。  一般来说,要选择一个数据集合中的频繁数据集,则需要自定义评估标准。最常用的评估标准是用自定义的支持度,或者是自定义支持度和置信度的一个组合。

  2.Apriori算法思想

  对于Apriori算法,我们使用支持度来作为我们判断频繁项集的标准。Apriori算法的目标是找到最大的K项频繁集。这里有两层意思,首先,我们要找到符合支持度标准的频繁集。但是这样的频繁集可能有很多。第二层意思就是我们要找到最大个数的频繁集。比如我们找到符合支持度的频繁集AB和ABE,那么我们会抛弃AB,只保留ABE,因为AB是2项频繁集,而ABE是3项频繁集。那么具体的,Apriori算法是如何做到挖掘K项频繁集的呢?

  Apriori算法采用了迭代的方法,先搜索出候选1项集及对应的支持度,剪枝去掉低于支持度的1项集,得到频繁1项集。然后对剩下的频繁1项集进行连接,得到候选的频繁2项集,筛选去掉低于支持度的候选频繁2项集,得到真正的频繁二项集,以此类推,迭代下去,直到无法找到频繁k+1项集为止,对应的频繁k项集的集合即为算法的输出结果。
  Apriori算法描述

  Apriori算法指导我们,如果要发现强关联规则,就必须先找到频繁集。所谓频繁集,即支持度大于最小支持度的项集。如何得到数据集合D中的所有频繁集呢?

  有一个非常土的办法,就是对于数据集D,遍历它的每一条记录T,得到T的所有子集,然后计算每一个子集的支持度,最后的结果再与最小支持度比较。且不论这个数据集D中有多少条记录(十万?百万?),就说每一条记录T的子集个数({1,2,3}的子集有{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3},即如果记录T中含有n项,那么它的子集个数是2^n-1)。计算量非常巨大,自然是不可取的。

  所以Aprior算法提出了一个逐层搜索的方法,如何逐层搜索呢?包含两个步骤:

  1.自连接获取候选集。第一轮的候选集就是数据集D中的项,而其他轮次的候选集则是由前一轮次频繁集自连接得到(频繁集由候选集剪枝得到)。

  2.对于候选集进行剪枝。如何剪枝呢?候选集的每一条记录T,如果它的支持度小于最小支持度,那么就会被剪掉;此外,如果一条记录T,它的子集有不是频繁集的,也会被剪掉。

  算法的终止条件是,如果自连接得到的已经不再是频繁集,那么取最后一次得到的频繁集作为结果。

  需要值得注意的是:

  Apriori算法为了进一步缩小需要计算支持度的候选集大小,减小计算量,所以在取得候选集时就进行了它的子集是否有非频繁集的判断。(参见《数据挖掘:概念与技术》一书)。

  另外,两个K项集进行连接的条件是,它们至少有K-1项相同。

  知道了这些可以方便我们写出高效的程序。

  可见这个算法还是很简洁的,第i次的迭代过程包括扫描计算候选频繁i项集的支持度,剪枝得到真正频繁i项集和连接生成候选频繁i+1项集三步。

  我们下面这个简单的例子看看:
我们的数据集D有4条记录,分别是134,235,1235和25。现在我们用Apriori算法来寻找频繁k项集,最小支持度设置为50%。首先我们生成候选频繁1项集,包括我们所有的5个数据并计算5个数据的支持度

  我们的数据集D有4条记录,分别是134,235,1235和25。现在我们用Apriori算法来寻找频繁k项集,最小支持度设置为50%。首先我们生成候选频繁1项集,包括我们所有的5个数据并计算5个数据的支持度,计算完毕后我们进行剪枝,数据4由于支持度只有25%被剪掉。我们最终的频繁1项集为1235,现在我们链接生成候选频繁2项集,包括12,13,15,23,25,35共6组。此时我们的第一轮迭代结束。

  进入第二轮迭代,我们扫描数据集计算候选频繁2项集的支持度,接着进行剪枝,由于12和15的支持度只有25%而被筛除,得到真正的频繁2项集,包括13,23,25,35。现在我们链接生成候选频繁3项集,123,125,135和235共4组,这部分图中没有画出。通过计算候选频繁3项集的支持度,我们发现123,125和135的支持度均为25%,因此接着被剪枝,最终得到的真正频繁3项集为235一组。由于此时我们无法再进行数据连接,进而得到候选频繁4项集,最终的结果即为频繁3三项集235。

  Aprior算法应用

#p#分页标题#e#

  经典的关联规则数据挖掘算法Apriori 算法广泛应用于各种领域,通过对数据的关联性进行了分析和挖掘,挖掘出的这些信息在决策制定过程中具有重要的参考价值。

#p#分页标题#e#

  Apriori算法广泛应用于商业中,应用于消费市场价格分析中,它能够很快的求出各种产品之间的价格关系和它们之间的影响。通过数据挖掘,市场商人可以瞄准目标客户,采用个人股票行市、最新信息、特殊的市场推广活动或其他一些特殊的信息手段,从而极大地减少广告预算和增加收入。百货商场、超市和一些老字型大小的零售店也在进行数据挖掘,以便猜测这些年来顾客的消费习惯。

  Apriori算法应用于网络安全领域,比如时候入侵检测技术中。早期中大型的电脑系统中都收集审计信息来建立跟踪档,这些审计跟踪的目的多是为了性能测试或计费,因此对攻击检测提供的有用信息比较少。它通过模式的学习和训练可以发现网络用户的异常行为模式。采用作用度的Apriori算法削弱了Apriori算法的挖掘结果规则,是网络入侵检测系统可以快速的发现用户的行为模式,能够快速的锁定攻击者,提高了基于关联规则的入侵检测系统的检测性。

  Apriori算法应用于高校管理中。随着高校贫困生人数的不断增加,学校管理部门资助工作难度也越加增大。针对这一现象,提出一种基于数据挖掘算法的解决方法。将关联规则的Apriori算法应用到贫困助学体系中,并且针对经典Apriori挖掘算法存在的不足进行改进,先将事务数据库映射为一个布尔矩阵,用一种逐层递增的思想来动态的分配内存进行存储,再利用向量求”与”运算,寻找频繁项集。实验结果表明,改进后的Apriori算法在运行效率上有了很大的提升,挖掘出的规则也可以有效地辅助学校管理部门有针对性的开展贫困助学工作。

  Apriori算法被广泛应用于移动通信领域。移动增值业务逐渐成为移动通信市场上最有活力、最具潜力、最受瞩目的业务。随着产业的复苏,越来越多的增值业务表现出强劲的发展势头,呈现出应用多元化、营销品牌化、管理集中化、合作纵深化的特点。针对这种趋势,在关联规则数据挖掘中广泛应用的Apriori算法被很多公司应用。依托某电信运营商正在建设的增值业务web数据仓库平台,对来自移动增值业务方面的调查数据进行了相关的挖掘处理,从而获得了关于用户行为特征和需求的间接反映市场动态的有用信息,这些信息在指导运营商的业务运营和辅助业务提供商的决策制定等方面具有十分重要的参考价值。

  3.Aprior算法流程

  下面我们对Aprior算法流程做一个总结。

  输入:数据集合D,支持度阈值Αα

  输出:最大的频繁k项集

  1)扫描整个数据集,得到所有出现过的数据,作为候选频繁1项集。k=1,频繁0项集为空集。

  2)挖掘频繁k项集

  a)扫描数据计算候选频繁k项集的支持度

  b)去除候选频繁k项集中支持度低于阈值的数据集,得到频繁k项集。如果得到的频繁k项集为空,则直接返回频繁k-1项集的集合作为算法结果,算法结束。如果得到的频繁k项集只有一项,则直接返回频繁k项集的集合作为算法结果,算法结束。

  c)基于频繁k项集,连接生成候选频繁k+1项集。

  3)令k=k+1,转入步骤2。

  从算法的步骤可以看出,Aprior算法每轮迭代都要扫描数据集,因此在数据集很大,数据种类很多的时候,算法效率很低。

  4.Aprior算法总结

  Aprior算法是一个非常经典的频繁项集的挖掘算法,很多算法都是基于Aprior算法而产生的,包括FP-Tree,GSP,CBA等。这些算法利用了Aprior算法的思想,但是对算法做了改进,数据挖掘效率更好一些,因此现在一般很少直接用Aprior算法来挖掘数据了,但是理解Aprior算法是理解其它Aprior类算法的前提,同时算法本身也不复杂,因此值得好好研究一番。

  不过scikit-learn中并没有频繁集挖掘相关的算法类库,这不得不说是一个遗憾,不知道后面的版本会不会加上。
  Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集。而且算法已经被广泛的应用到商业、网络安全等各个领域。
更多详细内容尽在课课家哦!

    关键字:

在线提交作业