大数据在销售层面的影响分析
当传统的技术、经验、经营模式被不断复制,企业愈发难以让业务“开出一朵鲜花”。大数据的出现恰当时,企业决策者开始尝试用数据引领商业创新,希望借助技术驱动业务的变革带动增量市场的创新。这样的诉求,也在无形中渗入网络安全产业,给予众人更多灵感,思考如何在网络安全环境让大数据发挥作用。
在过去几年,全球零售商一直试图利用大数据创造价值。由于其大数据分析基础架构的限制,许多工作被一再推迟。Hadoop为这些零售商打开了新的大门,它可以解决他们在过去几年在大数据领域面临的许多问题和挑战。
Hadoop:跨多门编程语言的大数据解决方案
Hadoop背后的技术最初是由Google大约在10年前开发的。核心代码主要是用java编写的,但有一些是用C编写的。然而,它运行在一个称为MapReduce的编程模型中,这允许开发人员用其他语言创建新的Hadoop代码。
由于MapReduce环境可以接受不同的编程语言代码,因此它非常通用。它可以提取,分析和操作许多不同来源的大数据。它使用各种算法来进行关联规则学习,聚类,分类和回归。这些算法依赖于各种函数,包括贝叶斯,期望最大化和FP-Grown算法。
Cloudera的首席执行官Mike Olson表示,Hadoop目前仍处于起步阶段,但它已经在塑造零售和金融领域厂商使用大数据的方式了。
“Hadoop平台旨在解决大量数据(可能是复杂的和结构化的,并且不能很好地融入表中的数据)的混合问题。它适用于深度和计算量大的分析,例如聚类和定位…在在线零售中,如果想为客户提供更好的搜索答案,以提高用户的购买欲望,Hadoop可以很好地解决这一问题。
Sears控股公司分部副总裁Aashish Chandra表示,Hadoop已经帮助公司降低了运营成本,提高了销售额。Chandra说,以前的大数据提取工具缺乏他们所需要的功能。
使用Hadoop挖掘销售点大数据
销售点数据在零售业中起着非常重要的作用。公司依靠销售点大数据来预测未来销售,管理库存和项目人员需求。
有许多销售点工具可以聚合销售信息并将其存储在大数据集中。然而,零售商难以用常规工具从PoS中挖掘大数据,即使它就存储在SQL数据库中。Hadoop使零售商更容易从客户数据库访问信息,此数据可以转换为其他格式,并与其他文件中的数据集合并。
New Horizons CLC的John Soto声称Hadoop是零售业主要的改变者。
“大型零售商永远不可能利用其传统的大数据基础设施进行这种分析。存储如此多的历史数据是十分昂贵的,并且数据类型复杂,并且需要相当多的准备以允许它与PoS事务组合。Hadoop解决了这两个问题,并且可以运行比旧系统更复杂的分析。”
Hadoop可以让零售商预测分析挑战
Hadoop消除了零售商在利用大数据方面的一些障碍。这里有一些该技术带来的好处:
1、数据挖掘能力强。许多零售商都存储了TB级别的数据。这些数据集往往难以提取,因为它们有很深的嵌套。Hadoop有非常复杂的索引算法,因此它可以提取以前无法为大数据应用程序使用的数据。
在中国,尽管网络营销的概念很火,但网络营销的效率低于一些发达国家也是事实。无论是门户广告、搜索引擎广告,还是广告联盟,从行业平均转化率上看,都要低于国外较为成熟国家的水平。据估计,国内的Bounce rate(蹦失率,即用户只浏览第一页即离开的比例)介于90%~99%之间,而欧美的Bounce rate则是70%左右。诚然,国内的网络营销环境处于发展之中,环境不那么尽如人意,但中国互联网络信息中心分析师孙秀秀认为,出现这种情况的很多责任在投放广告的企业方,在于对营销背后的数据分析工作的不重视,没有精确定位有效的客户群,导致大量的展示给了不相关的网民。通常,广告投放前的数据分析可以分为两步走。第一步:描述目标群体。比如,目标群体是18~25岁,上网购物的年轻女性。第二步:描述此群体的网络活动轨迹。也就是说,知道目标客户群上什么网站、做什么事、在什么时间地点能够找到他非常重要。实际上,论覆盖面,网络营销还远远赶不上传统媒体。2009年底中国的互联网普及率为28.9%,而同期中国电视的普及率却已经超过80%。但是,仍旧有很多有远见的企业选择网络营销。其中的一个重要原因是,网络营销的全过程都可以被追踪到,通过数据分析可以随时调整投放方式。
#p#分页标题#e#
2、与不同的数据格式兼容。零售商以许多不同的格式存储数据。内部财务数据通常存储在.csv文件中。零售商一直在努力进行审计,因为他们无法比较结构化和非结构化数据集的数据。Hadoop可以提取多种格式的数据,进行分析并以更具凝聚力的形式呈现,它使大数据分析专家能够从多个来源的数据集之间寻找相关性。
零售商已经发现了使用Hadoop的好处:
1、Staples使用Hadoop分析大数据和预测未来的销售,这有助于他们更有效地分配资源给人员和库存。 据报道,自使用Hadoop以来,Staples的促销成本降低了25%。
2、亚马逊使用Hadoop来改进欺诈检测模型。据报告,他们将信用卡欺诈减少了50%,因为他们可以更容易地识别出信用不佳的人。
3、相比之前,Brands可以得到更详细的客户信息,这有助于他们改进营销策略。使用Hadoop和预测分析的零售商的销售额增长了73%。
零售商只是开始认识到Hadoop和大数据的潜力。根据DeZyre所说,Hadoop最大的优势之一是它可以帮助零售商实时识别和应对挑战。这对防止欺诈尤其重要,因为罪犯总是在考虑新的骗局。
“操纵者总是在发明新的欺诈工具和技术,零售商必须使用零售分析来识别欺诈活动,防止它们再次发生。使用大数据技术(如Hadoop,MapReduce和Spark),可以对超过50 PB的数据执行分析,以准确预测潜在风险。”
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
更多详细内容,仅在课课家教育,我们期待您的咨询!